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This Supporting Information file contains further information on data, methods, and the data and
code files (see [20] and respectively) that we make available with this manuscript,
followed by Supporting Figs [AHD] and Supporting Tables [A] and [B] Numbers for equations, figures
and tables that are not prefixed by S refer to the main text of the paper.

S1.1 Additional Details on BMI Data Sets

S1.1.1 Northwestern Medicine Medical Records

The NU data set consists of medical records from the Northwestern Medical system of hospitals and
clinics, i.e., patients of Northwestern Memorial Hospital, Lake Forest Hospital, and 15 other Chicago
area locations: Bucktown (1776 N. Milwaukee Avenue, Chicago, Illinois 60647), Deerfield (350 S.
Waukegan Road Suites 100, 150 and 200, Deerfield, Illinois 60015), Delano Court (in the Roosevelt
Collection, 1135 S. Delano Court Suite A201, Chicago, IL 60605), Evanston (1704 Maple Avenue Suites
100 and 200, Evanston, Illinois 60201), Glenview (2701 Patriot Boulevard, Glenview, Illinois 60026),
Grayslake (1475 E. Belvidere Road, Pavilion C Suite 385, Grayslake, IL 60030), Highland Park (600
Central Avenue Suite 333, Highland Park, Illinois 60035), Libertyville (1800 Hollister Drive Suite 102,
Libertyville, Illinois 60048), Lakeview (1333 W. Belmont Avenue Suites 100 and 200, Chicago, Illinois
60657), Loop 1 (20 S. Clark Street Suite 1100, Chicago, Illinois 60603), Loop 2 (111 W. Washington St.
Suite 1801, Chicago, Illinois 60602), River North (635 N. Dearborn Street Suite 100, Chicago, Illinois
60654), Sauganash (4801 W Peterson, Suite 406, Chicago, IL 60646), Skokie (10024 Skokie Blvd Suite
304, Skokie, IL, 60077), and SoNo (South of North Avenue, 1460 N. Halsted Street Suites 203, 502,
and 504, Chicago, Illinois 60642).

We note that the NU data set may contain multiple measurements per individual per year. In that
case the BMI for individual ¢ in year ¢ is calculated using the average weight of individual ¢ in year ¢
and the average height of individual 7 taken over all years.

For the purpose of computing year-over-year BMI changes, the Northwestern Medicine medical
record contains measurements for 329,453 distinct individuals whose BMI can be calculated at at least
two time points (1,017,518 BMI differences in total).

S1.1.2 National Health and Nurtition Examination Survey

The National Health and Nutrition Examination Survey (NHANES) refers to a series of studies de-
signed to collect a representative sample of health and nutrition data for both adults and children
(approximately 5,000 individuals total per year) in the United States. NHANES data are available for
survey years 1999-2000, 2001-2002, ..., 2013-2014. Directly measured BMI data are available from
measurements taken during a physical exam. These data are used to compute empirical BMI distribu-
tions for each survey year. In addition, during an interview individuals were asked to self-report their
current weight and height, as well as their weight from the preceding year. These measurements allow
us to calculate self-reported change in BMI over the year preceding the interview. Note: we only use
NHANES data for individuals 18 years or older at the time of the survey.
NHANES data are available from the NHANES website

http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm.


http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm

Directly measured BMI measurements are given by the variable BMXBMI. Self-reported BMI mea-
surements are calculated from the variables WHDO010 (self-reported height at time of interview) and
WHDO020 (self-reported weight at time of interview). Self-reported change in BMI over the year pre-
ceding the interview are calculated from self-reported BMI and from variables WHD010 and WHDO050
(self-reported weight one year prior to interview).

Data were downloaded directly from the Centers for Disease Control and Prevention (CDC) website
as “XPT” files (in SAS format) and imported into Matlab. The variable BMXBMI is found in data
files with names starting with “BMX”, the variables WHD010, WHD020, and WHDO050 are found in
data files with names starting with “WHQ”, the variable RIDAGEYR is found in data files with names
starting with “DEMO”, and the SEQN variable is found in all data files. File names are completed by
adding the suffix “.XPT” for survey year 1999-2000, “_ B.XPT” for survey year 2001-2002, “_.C.XPT”
for survey year 2003-2004, etc...

S1.1.3 Behavioral Risk Factor Surveillance System

The Behavioral Risk Factor Surveillance System (BRFSS) refers to a series of telephone surveys de-
signed to collect a representative sample of health data for adults (aged 18 years or older) in the United
States. BRFSS data are available for survey years 1984, 1985, ..., 2013. We note that prior to 2011
BRFSS surveys were conducted over land lines only, whereas from 2011 onward BRFSS methodology
has been modified to include cell phones as well. We also note that many states did not participate
in early BRFSS surveys. Therefore, for the purposes of this study we only consider surveys from 1987
(the first year where a majority of states participated in the BRFSS) onwards. The number of indi-
vidual records for each BRFSS survey increases from approximately 50,000 in 1987, to approximately
135,000 in 1997, to more than 400,000 from 2007 onward. For each BRFSS survey we extract the
BMI of each individual surveyed and use this data to compute the empirical BMI distribution for that
year. We note that since these data are gathered using telephone interviews, the weight and height
measurements (used in calculating BMI) are all self-reported, in contrast to the NHANES and NU
data sets. Also in contrast to NHANES and NU data sets, the BRFSS data does not provide sufficient
data for us to compute the change in individuals’ BMI over time.
BRFSS data are available from the BRFSS website

http://www.cdc.gov/brfss/annual_data/annual_data.htm.

BRFSS surveys record BMI measurements in variable _BMI for survey years 1984-1999, BMI2 for
survey years 2000-2002, _BMI3 for survey year 2003, -BMI4 for survey years 2004-2010, and _-BMI5 for
survey years 2011 onwards. Data were downloaded directly from the CDC website as “.XPT” files (in
SAS format) and imported into Matlab. File names for BRFSS survey data for years 1978-2010 start
with “CDBRFS”, while file names for BRFSS survey data for years 2011-2013 start with “LLCP”.
File names are completed by adding the suffix “87.XPT’ for year 1987, “88.XPT” for year 1988, etc...


http://www.cdc.gov/brfss/annual_data/annual_data.htm

S1.2 Additional Details on Methods

S1.2.1 Properties of pgg)(:v; ko,z*) (Eq (12))

The properties of pé?) (z; ko, x*) (Eq ) listed in Table |B| can be derived as follows. We note that
for any population the BMI distribution must be strictly contained in the interval [0, 00). This implies

that peq(0) = 0 and that lim, oo pey(z) = 0. Assuming that 5(0) = 0 (which holds for our model, see
Eq )7 it follows that integrating Eq with vanishing temporal derivative yields
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where ¢ is a normalization constant such that [ peq(z)dz = 1. When a(z) = kr(z* — ) (no social
effects, i.e., ks = 0 in Eq () and b(z) = vk @, we can re-arrange Eq (SL.I) to yield
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which implies that pé‘;) (z) is a single peaked probability distribution whose mode is given by the

expression z* Z—i / (Z—i +1). (The mode of a continuous random variable with probability density function
f(z) is argmax,, f(x).) We can also re-arrange Eq (S1.1)) to yield
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Multiplying Eq (S1.1)) by  and re-arranging yields
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Re-arranging now yields (%) = 295*22—;/(2% —1). We note that we require (z?) > 0, i.e. that
2kr/ky > 1. We also note that this condition is satisfied by all empirical BMI distributions in the NU,
NHANES and BRFSS data sets. Similarly, multiplying Eq (S1.1) by 2?2, re-arranging, integrating, and
solving for (2?), yields (2%) = Z—i/(% —1) (%) z*.



The mean, variance, skewness, and mode skewness can now be computed using the following
relations to the mode and the first three moments.
mean = (x)
variance = (22) — (z)”
(x3) — 3 (z) (variance) — (z)?

and
(variance) 3

skewness = ,

mean — mode
mode skewness = ———
(variance)z

Remark: When 2* is distributed according to the probability density function f(-) then mean, mode,
standard deviation, skewness and mode skewness are given by the same expressions as in Table
where z* is replaced by (z*) = [2* f(z . This is the case because when x* is distributed according
to the probability density functlon f ) then the distribution function for BMIs in the population is
given by

P9 (x) = / pO () f (x*)dz*.

z) = / / 2 (2) f (a*)da* de = / / 0 (2)dz f(z*)da* = (2*)

S1.2.2 Solving Eq (S1.2)) for p.,(x) (social model, kg # 0)

In the case of the social model (kg # 0 in Eq ), Eq (S1.2)) does not provide a closed-form solution
for the equilibrium distribution. However, the stationary solution to Eq is given implicitly by

Eq (S1.2), i.e., Eq (S1.2) becomes
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So, for example,

where we consider the continuum limit and the discrete sum in Eq has been replaced by an integral
over the population with distribution peq(z). In order to solve for peq(«) numerically, we implement the
following iterative scheme in which we discretize the iterative approximations qu) (z) and approximate
the double integral numerically.
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Let m =181, Az =0.5, and and Vi = 1,2,...,m: z; = 10+ (i — 1)Az. We set
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We then set
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where I x; = 1if X is true and I x; = 0 otherwise, and where we terminate the iterative process once
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S1.2.3 Fitting distribution functions to empirical BMI distributions

Suppose that f(x;0) is a probability density function with parameters . We fit f(z;6) to empirical
BMI data measurements {z;}~ , using the principle of maximum likelihood parameter estimation.

Specifically, we set
N

0= argmaXH f(zi;0),

o =1

where L;(0|z) = Hfil f(z;;0) is called the likelihood function. In Matlab we perform this optimization
using the Matlab function fminsearch to solve the equivalent optimization problem

N

f = argmin — log(L ;(0]z)) = argmin — Z log [f(x;]0)]
0 0 —

We note that we compute a separate set of parameters for each year of BMI data.

Remark: In fitting empirical BMI distributions to the equilibrium distribution of our model, i.e.
either the non-social model in Eq or the social model in Eq (see Fig. , we made the
assumption that the empirical distribution was close to the equilibrium distribution. We argued that
this assumption was justified because parameter values in our model drift on a time scale that is slower
than individual equilibration times. Alternatively, we could have parametrized the parameters

() =a5+ it —to) +...+ay(t —1t9)"/n!
k](t) = k[,o + /€]A’1(t — to) + ...+ kj’n(t —to)"/n!, and
ky(t) = kyo + kb,l(t —to)+ ...+ k‘b’n(t —t9)"/n!,

and fit the solution to the full Fokker-Planck equation, i.e. Eq , to the empirical BMI distributions
(again using the principle of maximum likelihood parameter estimation). We note that we have not
adopted this strategy in the main text because (a) it is very computationally intensive and (b) the
result does not differ significantly from when we fit empirical BMI distributions to the equilibrium
distribution of our model. To illustrate this point, we compare fitting BRFSS BMI distributions to
the non-social model in Eq and to the solution of the full Fokker-Planck equation with n = 1, as

described above, see

S1.2.4 Estimating parameters (k;,i*, kg,6) in a(z) (Eq () and V&, in b(z)
(Eq (10))
In this section we describe how we estimate the parameters for the drift and diffusion curves (solid

black) in Fig. 2| fitted to the individual-level NU and NHANES data for all available years. The fitted
parameters are presented in Table [A]



Consider individual ¢ from survey year ¢t = ¢; with BMI measurements at times ¢t and t5 = t1 + At,
i.e. with BMI measurements x;(¢1) and z;(t2). We denote the change in BMI by Ax;(t;) = x;(t2) —
z;(t1). For € > 0 we define

S jlag(t)—e(t<e ~ Rt
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respectively, where N (z;(t), €) is the number of individuals j with |z;(t) — z;(t)| <€, i.e.,

N(zi(t),€) = > 1.

il (t)—mi(t)|<e

We note that in order to reduce computation time we do not compute Eqs (S1.4a) and (S1.4b|) for each
individual ¢ separately. Instead, we compute Eqs (S1.4a]) and (S1.4b)) on the grid {10, 10.1,10.2,...,100}
and then evaluate a(x;(t);€) and b(z;(¢); €) using linear interpolation.

To estimate v/k, we compute b(z;(t);€) from BMI data and regress it on z;(¢). To estimate the
remaining parameters we define the objective function

Yo lal@i(t);e) — ali(t)))?
Zi,t 1
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and solve the optimization problem

(l%;,:%*,/%s,6): argmin  S(kr,z*, kg, 0;€), (S1.5)
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where we have suppressed the dependence of (/%I,ic*, l%s,&) on ¢ for convenience of notation. Recall
from Eq @D that
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and where N (t) is the number of observations in survey year t. Observe that, for fixed o, the objective
function S(kz,z*, ks,0;¢€) is the objective function for the linear regression of a(w;(t);€) on —w;(t),
?Tlf(xi(t);a), and a constant. It follows, therefore, that there is a unique (k;(o),z*(0),ks(o)) that
solves

(%I(a)@*(a),ks(g)) = argmin S(kr,a* ks, o7€) (S1.6)
(kr,z*,ks)
and that can be computed using linear regression. Solving the optimiation problem in Eq (S1.5)) is
now reduced to a one dimensional problem, i.e., we solve

& = argmin S (l;:I(U),:E*(U), I%S(U),U)
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and set (kr,2*, ks) = (k1(6),3*(6), ks(6)).



We estimate the parameters k; and z* with ks = 0 by regressing a(x;(t);€) on —z;(t) and a
constant. Note that when kg = 0 the parameter o is undetermined.

We note that the methodology presented in this section can only be applied to NHANES and NU
BMI data, because these are the only data sets that have information on how individuals’ BMI changes
over time. We are able to compute Ax;(t) for individuals ¢ in the NHANES data set with self-reported
weights WHDO010 (current, i.e. at time t5) and WHDO050 (one year prior to survey, i.e. at time ¢;),
and with self-reported height WHDO020. For convenience we set t = 1999 for the 1999-2000 NHANES
survey, t = 2001 for the 2001-2002 NHANES survey, etc... We note that for the NHANES data At = 1.
For NU data we also consider At = 1, i.e., we consider individuals for whom we can compute BMI in
two consecutive years. NU data for individuls in consecutive years exists for years

t € {1996, ...,2013}.

As above, if multiple weight measurements are present in year ¢ we calculate the BMI for that year
using the average weight in year ¢, whereas if multiple heights measurements are present then we
calculate BMI using the average height (where the average is taken over all years). We note that for
both data sets we use € = % to compute Eqs and .

All computations are performed in Matlab. Regressions are performed using the Matlab function
regress. Optimization are performed using the Matlab function fminsearch.

S1.2.5 Akaike Information Criterion

We give a brief overview of maximum likelihood estimation and the Akaike Information Criterion.

S1.2.5.1 Maximum Likelihood Estimation

Suppose that we have independently and identically distributed (IID) data {z;}¥; that are drawn
from the unknown probability distribution p(z). Suppose also that we are attempting to model the
unknown probability distribution p(x) by the family of parametric probability distribution functions
{f(x|6)}g, i.e. our goal is to find the 6 such that, of all the functions in {f(z|6)}s, f(|d) is the “best”
approximation to p(z). The maximum likelihood estiamtor (MLE) @ is the parameter that maximizes
the likelihood function L;(8|x), i.e.

N
6= argmaxH f(z:]0) . (S1.7)
o =
=L (0]z)
We note that the relative likelihood function
,_ Lil0f)
Ly(0]z)

is interpreted as follows: f(z|0) is r times as likely as f(z|0) to be the “best” approximation to p(z).
In this case, “best” is in the context of maximizing the likelihood function.

S1.2.5.2 Akaike Information Criterion

The Akaike Information Criterion (AIC) is a generalization of the principle of maximum likelihood
estimation. An equivalent formulation of the MLE given in Eq. (S1.7) is given by maximizing the
average log-likelihood function Sy (f(+6)), i.e.

N
. 1 1
0 = argmax — log (L ¢(0|x)) = argmax — lo x;|0)) .
gmax g (Ly(0]x)) e N; g(f(il0))
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It can be shown that the mean log-likelihood function Sy (f(:|0)) converges with probability 1 to

S(p: £(16)) = / p(a) log(f (2]0)) dz.

From this quantity we define the Kullback-Leibler mean information for the discrimination between
p(z) and f(:|0)
I(p; f(10)) = S(p;p) — S(ps f(:10)),

which can be shown to be non-negative, with I(p; f(-|)) =0 <= f(z]0) = p(z) almost everywhere.
Roughly speaking, I(p; f(:|#)) can be interpreted as the amount of information lost when f(:|6) is
used to approximate p(z). This quantity induces a natural model selection criterion, i.e. we select the
model that minimizes I(p; f(:6)).

Remarks:

1. 8(p; f(:]6)) can be approximated by Sy (f(-|¢)), which can be computed from the data without
knowing the “true” distribution p(x).

2. Setting § = argmin, I(p; f(-|0)), equivalently § = argmax, S(p; f(-|0)) ~ argmax, Sx(f(-0))
recovers the MLE.

The key observation for the establishment of the AIC criterion is that the quantity I(p; f(-|0)) can
be approximated as follows. Suppose that the true model is p(xz) = f(x|6p) for some 6y € © and
suppose that 6 is the MLE for the model restricted to some k-dimensional subspace ©' C O, i.e.

0 = argmax L(6|x).
9c0’'Co

Then it can be shown that

E |28V (9 £(10))] = E [2V 1(F(100): £(18))] = c+2k—2fjlog (F@ild)) = 2k — 210g (£,(01a) ).

i=1

=AIC(f(:|0))

where ¢ is a constant, k is the dimension of ©’ (i.e., the number of parameters in the model), and
where AIC(f(-|0)) = 2k — 2log (,Cf (é\x)) is the Akaike Information Criterion (AIC). It follows that

minimizing I(p; f(-|f)) is equivalent to minimizing the AIC. A key point is that k is the number of
parameters in the model, and the AIC deals with the trade-off between the goodness of fit of the model
and the complexity (number of parameters) of the model.

We now would like to generalize the likelihood ratio introduced above. Suppose that we compute
the AIC for two different models resulting in AIC values AIC; = 2k; — 2log(£1) and AIC, =
2kq — 2log (L2) with AIC; < AIC,. Then the relative likelihood ratio

L2

Ly

(AIC’l — AIC,
r=exp|———5

) = exp (ky — ks)

is interpreted as follows: model 1 is r times as likely to be the “best” approximation to the true
distribution than model 2. In this case, “best” is in the context of minimizing the AIC (i.e. minimizing
the loss of information when using models 1/2 to approximate the “true” distribution p(z)).

S1.2.6 Ongoing Right-Skewed Broadening of the BMI Distribution over
Time

Our results offer a mechanism to explain why BMI distributions continue to broaden over time, espe-
cially on the high-BMI side. Essentially, in the context of our findings the observed growth in average



BMI (Fig. |1)) implies more fluctuations since fluctuations are proportional to BMI (Fig. [2} red trian-
gles), and more fluctuations mean a broadening of the distribution. In addition we also consider the
following effect. Recall that the constants k; and k; determine the rates in the set point drift term
of Eq and the diffusion amplitude of Eq , respectively. We observe a decrease over time of
ko = kr/kp, which reflects a growing relative importance of fluctuations over drift (see Fig. , and
we will explain now that this also implies a broadening of the distribution, especially on the high-BMI
side.

All these effects can be quantified precisely using expressions for the mean, mode, variance, skew-
ness, and mode skewness of our theoretical BMI distribution Eq (12)) (see Table. The table expresses
these quantities in terms of x* and ko = kj/kp, see SM Section for detailed calculations. Note
that, in order for the variance to be non-negative we require that 2k;/k, — 1 > 0. This condition is
satisfied in all the empirical BMI distributions considered in this study.

As was shown in Fig. [1, BMI mean and SD have both steadily grown since at least 1987 while the
obesity epidemic was running its course (with tempered growth in more recent years).

In terms of explaining why SDs of US BMI distributions continue to increase over time and why
BMI distributions broaden, the formula for the SD in our theoretical BMI distribution of Eq ,
given by z*/+/2ko — 1 (Table , provides insight. SD increases proportionally with the mean BMI,
and a decrease in kg (increasing importance of fluctuations) also implies an increase in SD. Intuitively,
an increase in the mean BMI implies more fluctuations since fluctuations are proportional to BMI,
and a decrease in ko (the relative importance of drift over fluctuations) also implies more fluctuations.
These increasing fluctuations naturally broaden the BMI distribution over time.

The skewness of our theoretical BMI distribution Eq is given by 24/2kg — 1/(ko—1) (Table.
Note that positive values for skewness correspond to right-skewness. Fig. [C|shows that kg = kj/ks,
which reflects the relative importance of drift over fluctuations, has steadily decreased over the course
of the obesity epidemic, at least since 1987. This decrease is likely due in large part to an increase in
the fluctuation proportionality constant v/k;, over time, which may plausibly be linked to the factors
that have caused the increase in average BMI for the population over time, for example, an increase in
average calorie intake or portion sizes over time. Indeed, if human BMIs are characterised by short-term
fluctuations (Fig. 2| red triangles), one can expect these fluctuations to become larger when average
calorie intake or portion sizes increase over time. Applying skewness formula 24/2kg — 1/(kg—1) to the
fitted values of kg in Fig. one finds, for example, that the skewness = 0.77 for kg ~ 15 (for 1996),
and skewness increases as ko decreases over time. This shows that our predicted BMI distribution
naturally features right-skewness (essentially due to the fluctuations being larger on the high-BMI
side), and that skewness increases over time (since ko decreases).



S1.3 Data and Code Files Made Available with this Manuscript

The following data and code files are made available as additional Supporting Information in a single
zipped archive. All figures and tables of this paper are fully reproducible using these files.

S1.3.1 Matlab Code

The results presented in this paper were generated using the following three Matlab m-files.

1.

2.

BMI_Master.m: Executes files fitBMIdistn.m, fitAB.m, and dpdt.m, see below.

fitBMIdistn.m: Performs population-level calculations, i.e. fits nonsocial model pfgg) (x), social
model peq(x), and log-normal fio, distribution to empirical BMI distribution data.

fitAB.m: Performs individual-level calculations, i.e. computes coefficients a(z) and b(z) from
year-over-year change in BMI data.

dpdt.m: Fit solution to the partial differential equation (non-social model) with parameters z*,
k1, and kp, that vary linearly in time to empirical BMI distributions computed from BRFSS data.

These files are included in the Supporting Information file

S1.3.2 NU, NHANES, and BRFSS BMI Data Files

The following files are used by the Matlab Code described in the previous section and have been
deposited with Dryad [20].

1.

NU data are stored in NU.csv comma separated values (CSV) format. This file contains five
columns: year ¢, BMI in year ¢, BMI in year ¢ + 1, age in year ¢, and gender.

e Note: When BMI in year ¢t + 1 is unavailable then the entry in the third column is -1.

. NHANES data are either self-reported (used to calculate year-over-year change in BMI) or di-

rectly measured (used to compute BMI distributions) data. We associate NHANES data from
survey 1999-2000 with ¢t = 1999, from survey 2001-2002 with ¢ = 2001, and so on.

(a) Self-reported NHANES data are stored in NHANES_SR.csv in CSV format. This file con-
tains five colums: year ¢, BMI in year ¢t — 1 (i.e. year prior to the interview), BMI in year ¢
(i.e. at time of interview), age in year ¢, and gender.

e Note: Because self-reported NHANES data are only used for individual-level compu-
tations, NHANES_SR.csv only records data from respondents who reported both (a)
BMI at time of NHANES interview and (b) BMI one year prior to NHANES interview.

(b) Directly measured NHANES data are stored in NHANES_DM.csv in CSV format. This file
contains four columns: year ¢, BMI in year ¢, age in year ¢, and gender.

3. BRFSS data are stored in BRFSS_BMI.csv in CSV format. This file contains two columns: year

t, BMI in year t.
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Supplementary Figures (Figs A-D)
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Fig A: Drift and diffusion in the short-term BMI dynamics of individuals in a human
population, by age and gender, corresponding to Fig. 2 in the main text. The figure shows
the average annual change in the BMI of individuals (blue dots), and the standard deviation of the
annual change in the BMI of individuals (red triangles), as a function of BMI, for data from our new
large NU data set (initial exams occuring in 2011) and from the publicly available NHANES survey data
set (measurements recorded in 2011-2012 survey). These results confirm that BMI dynamics feature
a drift towards a set point, and a diffusion that is proportional to the BMI. The black curves are the
curves of best fit to our mathematical models for the drift term (Eq (2), including social effects) and
for the diffusion amplitude (Eq ), as discussed in the [Methods and mathematical models| section.
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Fig A: Drift and diffusion in the short-term BMI dynamics of individuals in a human
population, by age and gender, corresponding to Fig. 2 in the main text. The figure shows
the average annual change in the BMI of individuals (blue dots), and the standard deviation of the
annual change in the BMI of individuals (red triangles), as a function of BMI, for data from our new
large NU data set (initial exams occuring in 2011) and from the publicly available NHANES survey data
set (measurements recorded in 2011-2012 survey). These results confirm that BMI dynamics feature
a drift towards a set point, and a diffusion that is proportional to the BMI. The black curves are the
curves of best fit to our mathematical models for the drift term (Eq (2)), including social effects) and
for the diffusion amplitude (Eq ), as discussed in the [Methods and mathematical models| section.
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Fig B: Results from fitting the 2011 NHANES and BRFSS empirical BMI distributions
(black dots) to predicted distributions pgg) (x) (no social effects; red solid) and p,(z) (with
social effects; red dashed), and to a standard log-normal (blue dash-dotted) and skew-
normal (green dotted) distributions. The top panels illustrate that the BMI distribution is
right-skewed. The second-line panels show the BMI distributions in log scale, and the third-line panels

show the difference between the log-normal distribution as null-model and the other distributions.

The second-line and third-line panels show clearly that the new pﬁi}) () and peg(z) distributions are

more successful in fitting the empirical data than the commonly used log-normal and skew-normal
distributions. The non-social p.(g?,) (x) (red solid), and, in particular the social pe,(z) (red dashed), are
a much better fit to the empirical data than the two standard distributions, both in the central part
of the distribution (third-line panels) and in the high-BMI tail (second-line panels). Note that the
improvement of the social model is less pronounced in the NHANES data, which is likely due to the
very small sample size in the NHANES data. This is confirmed in the bottom panels that show the
root mean-square error (RMSE) for the data over the full range of years. Overall, the NHANES and

BRFSS results are fully consistent with the observations in the main paper for the more extensive NU
data.

13



18 ¢
<
167
<
Il
- 14 ¢
<
12 ¢
10 : : :
1990 2000 2010
Year (t)

Fig C: Fitted parameter ky = k;/k;, for each available year of the BRFSS survey data
(nonsocial model). The relative importance of drift over fluctuations has steadily decreased in the
course of the obesity epidemic.
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Fig D: Drift and diffusion in the short-term BMI dynamics of individuals in a human
population, for the entire data set over all years. This Figure repeats Fig [2] (with 2011-2012
data) from the main text, but now for the entire data set over all years. The average annual change
in the BMI of individuals (blue dots), and the standard deviation of the annual change in the BMI of
individuals (red triangles), are shown as a function of BMI, for the NU and NHANES data sets over all
years. These results confirm, for the entire data set, the nearly linear relations for the annual change
and its standard deviation that were identified in Fig [2] for data years 2011-2012. Due to increased
data size, the curves for the entire data set are less noisy. We can observe that the standard deviation
appears to grow faster than linear for large BMIs greater than about 45, both for the NU patient data
and the NHANES population data (which is still noisy for the largest BMIs). The black curves are the
curves of best fit for all data years to our mathematical models for the drift term (Eq , including
social effects) and for the diffusion amplitude (Eq ), as discussed in the[Methods and mathematicall

section.

14



Tables A and B

Table A: Parameter estimates for the drift and diffusion curves (solid black) in Fig. @
fitted to the individual-level NU and NHANES data for all available years. We estimate
ki, #*, kg, and o in the drift term a(z) (Eq (2)) for both the nonsomal (ks = 0) and social (kg # 0)
models. We also estimate /k, in the diffusion amplitude b(z) (Eq . The fitting procedure is

described in Section

Parameters N
b

Data Model ~ ~ Lo-Error Lo-Error
kr x* ks o
nonsocial 0.127 28.0 0 — 0.566
NHANES social 0.149 28.0 25.2 2.08 0.545 0.084 0.497
NU nonsgmal 0.059 28.0 0 — 0.374 0.071 0.461

social 0.069 28.0 9.4 3.44 0.365

Table B: Properties of the BMI equilibrium distribution p&?} (z; ko, 2*), Eq (ko = ki /kv;
no social interaction). Increase in #* over time implies increase in SD (consistent with Fig. ; our
model essentially explains this using the observation that fluctuations increase proportional to BMI
(Fig. . Similarly, SD and right-skewness also increase when ko decreases over time (as shown in Fig.
, i.e., when fluctuations become relatively more important than drift.

Property Value
Mean x*
Mode kox*/(ko + 1)

Standard Deviation x*[2ko — 1

Skewness 2v2ko — 1/(ko — 1)
Mode Skewness V2ko — 1(ko + 1)
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